Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair.
نویسندگان
چکیده
The activity of human replication protein A (RPA) in DNA replication and repair is regulated by phosphorylation of the middle RPA2 subunit. It has previously been shown that up to nine different N-terminal residues are modified in vivo and in response to genotoxic stress. Using a novel antibody against phospho-Ser(29), a moiety formed by cyclin-Cdk, we observed that RPA2 was phosphorylated during mitosis in nonstressed cells. Robust phosphorylation of Ser(29) was also seen in interphase cells following treatment with the DNA-damaging agent camptothecin, a rare example of stress stimulating the modification of a repair factor by cyclin-Cdk. RPA2 phosphorylation is regulated both in cis and trans. Cis-phosphorylation follows a preferred pathway. (That is, the initial modification of Ser(33) by ATR stimulates subsequent phosphorylation of Cdk sites Ser(23) and Ser(29)). These events then facilitate modification of Thr(21) and extreme N-terminal sites Ser(4) and Ser(8), probably by DNA-PK. Our data also indicate that the phosphorylation of one RPA molecule can influence the phosphorylation of other RPA molecules in trans. Cells in which endogenous RPA2 was "replaced" with a double S23A/S29A-RPA2 mutant were seen to have an abnormal cell cycle distribution both in normal and in stressed cells. Such cells also showed aberrant DNA damage-dependent RPA foci and had persistent staining of gammaH2AX following DNA damage. Our data indicate that RPA phosphorylation facilitates chromosomal DNA repair. We postulate that the RPA phosphorylation pattern provides a means to regulate the DNA repair pathway utilized.
منابع مشابه
Nickel Increases Chromosomal Abnormalities by Interfering with the Initiation of DNA Repair Pathways
Background: Nickel is a carcinogenic, heavy metal released through industrial activities and via natural resources. It is able to cause DNA damages by reducing the efficiency of DNA repair mechanisms. However, the exact time point at which it is able to interfere with these mechanisms is not yet clearly understood. Methods: To find the most nickel-vulnerable time of repair mechanisms, human de...
متن کاملFANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein.
The BRCA1 associated C-terminal helicase (BACH1, designated FANCJ) is implicated in the chromosomal instability genetic disorder Fanconi anemia (FA) and hereditary breast cancer. A critical role of FANCJ helicase may be to restart replication as a component of downstream events that occur during the repair of DNA cross-links or double-strand breaks. We investigated the potential interaction of ...
متن کاملFunction of Replication Protein A in DNA repair and cell checkpoints
Replication Protein A (RPA), the major eukaryotic single-strand DNA (ssDNA) binding protein, is essential for replication, repair, recombination, and checkpoint activation. Defects in RPA-associated cellular activities lead to genomic instability, a major factor in the pathogenesis of cancer. The ssDNA-binding activity of RPA is primarily mediated by two domains in the RPA1 subunit. I character...
متن کاملRPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage.
Human replication protein A (RPA) becomes phosphorylated on the RPA2 subunit by cyclin B-Cdc2 during mitosis, although the functional role of this modification is unclear. We find that this modification stimulates RPA2 to become hyperphosphorylated in response to mitotic DNA damage caused by bleomycin treatment. Cells in which endogenous RPA2 was replaced by a mutant subunit lacking both Cdc2 s...
متن کاملFunctional characterization of a cancer causing mutation in human replication protein A.
Replication protein A (RPA) is the primary ssDNA-binding protein in eukaryotes. RPA is essential for DNA replication, repair, and recombination. Mutation of a conserved leucine residue to proline in the high-affinity DNA binding site of RPA (residue L221 in human RPA) has been shown to have defects in DNA repair and a high rate of chromosomal rearrangements in yeast. The homologous mutation in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 49 شماره
صفحات -
تاریخ انتشار 2007